z-logo
Premium
Compact and Loeb Hausdorff spaces in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {ZF}$\end{document} and the axiom of choice for families of finite sets
Author(s) -
Keremedis Kyriakos
Publication year - 2012
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201020039
Subject(s) - physics , combinatorics , backslash , omega , mathematics , quantum mechanics
Given a set X , \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}(X)}$\end{document} denotes the statement: “ \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$[X]^{<\omega }\backslash \lbrace \varnothing \rbrace$\end{document} has a choice set ” and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )$\end{document} denotes the family of all closed subsets of the topological space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbf {2}^{X}$\end{document} whose definition depends on a finite subset of X . We study the interrelations between the statements \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}(X)},$\end{document} \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}([X]^{<\omega })},$\end{document} \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin} (F_{n}(X,2))},$\end{document} \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$\end{document} and “ \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$\end{document} has a choice set ”. We show: (i) \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}(X)}$\end{document} iff \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}([X]^{<\omega } )}$\end{document} iff \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$\end{document} has a choice set iff \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}(F_{n}(X,2))}$\end{document} . (ii) \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}_{\mathrm{fin}}$\end{document} ( \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}$\end{document} restricted to families of finite sets) iff for every set X , \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$\end{document} has a choice set. (iii) \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}_{\mathrm{fin}}$\end{document} does not imply “ \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$\end{document} has a choice set( \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {K}(\mathbf {X})$\end{document} is the family of all closed subsets of the space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbf {X}$\end{document} ) (iv) \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {K}(\mathbf {2}^{X})\backslash \lbrace \varnothing \rbrace$\end{document} implies \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$\end{document} but \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}(X)}$\end{document} does not imply \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$\end{document} . We also show that “ For every set X , “ \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$\end{document} has a choice set ” iff “ for every set X , \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {K}\big (\mathbf {[0,1]}^{X}\big )\backslash \lbrace \varnothing \rbrace$\end{document} has a choice set ” iff “ for every product \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbf {X}$\end{document} of finite discrete spaces, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {K}(\mathbf {X})\backslash \lbrace \varnothing \rbrace$\end{document} has a choice set ”.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom