z-logo
Premium
Do there exist complete sets for promise classes?
Author(s) -
Beyersdorff Olaf,
Sadowski Ze
Publication year - 2011
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201010021
Subject(s) - advice (programming) , physics , combinatorics , mathematics , computer science , programming language
In this paper we investigate the following two questions: Q1: Do there exist optimal proof systems for a given language L ? Q2: Do there exist complete problems for a given promise class \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {C}$\end{document} ? For concrete languages L (such as TAUT or SAT) and concrete promise classes \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {C}$\end{document} (such as \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {NP}\cap \mathsf {co}\mathsf {NP}$\end{document} , \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {UP}$\end{document} , \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {BPP}$\end{document} , disjoint \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {NP}$\end{document} ‐pairs etc.), these questions have been intensively studied during the last years, and a number of characterizations have been obtained. Here we provide new characterizations for Q1 and Q2 that apply to almost all promise classes \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {C}$\end{document} and languages L , thus creating a unifying framework for the study of these practically relevant questions. While questions Q1 and Q2 are left open by our results, we show that they receive affirmative answers when a small amount of advice is available in the underlying machine model. For promise classes with promise condition in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {co}$\end{document} \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {NP}$\end{document} , the advice can be replaced by a tally \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {NP}$\end{document} ‐oracle. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom