z-logo
Premium
Kolmogorov complexity and characteristic constants of formal theories of arithmetic
Author(s) -
Ibuka Shingo,
Kikuchi Makoto,
Kikyo Hirotaka
Publication year - 2011
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.201010017
Subject(s) - turing machine , kolmogorov complexity , mathematics , turing , sentence , combinatorics , discrete mathematics , computer science , algorithm , artificial intelligence , computation , programming language
We investigate two constants c T and r T , introduced by Chaitin and Raatikainen respectively, defined for each recursively axiomatizable consistent theory T and universal Turing machine used to determine Kolmogorov complexity. Raatikainen argued that c T does not represent the complexity of T and found that for two theories S and T , one can always find a universal Turing machine such that \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$c_\mathbf {S}= c_\mathbf {T}$\end{document} . We prove the following are equivalent: \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$c_\mathbf {S}\ne c_\mathbf {T}$\end{document} for some universal Turing machine, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$r_\mathbf {S}\ne r_\mathbf {T}$\end{document} for some universal Turing machine, and T proves some Π 1 ‐sentence which S cannnot prove. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom