z-logo
Premium
Thin equivalence relations in scaled pointclasses
Author(s) -
Schindler Ralf,
Schlicht Philipp
Publication year - 2011
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200920050
Subject(s) - equivalence relation , combinatorics , equivalence (formal languages) , mathematics , sigma , physics , discrete mathematics , quantum mechanics
For ordinals α beginning a Σ 1 gap in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathrm{L}(\mathbb {R})$\end{document} , where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\Sigma _{1}^{\mathrm{J}_{\alpha }(\mathbb {R})}$\end{document} is closed under number quantification, we give an inner model‐theoretic proof that every thin \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\Sigma _{1}^{\mathrm{J}_{\alpha }(\mathbb {R})}$\end{document} equivalence relation is \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\Delta _{1}^{\mathrm{J}_{\alpha }(\mathbb {R})}$\end{document} in a real parameter from the (optimal) hypothesis \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathsf {AD}^{\mathrm{J}_{\alpha }(\mathbb {R})}$\end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom