z-logo
Premium
On definability of types of finite Cantor‐Bendixson rank
Author(s) -
Tanović Predrag
Publication year - 2011
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200910134
Subject(s) - mathematics , rank (graph theory) , type (biology) , order (exchange) , extension (predicate logic) , property (philosophy) , pure mathematics , combinatorics , computer science , epistemology , philosophy , finance , economics , programming language , ecology , biology
We prove that every type of finite Cantor‐Bendixson rank over a model of a first‐order theory without the strict order property is definable and has a unique nonforking extension to a global type. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom