z-logo
Premium
Models of expansions of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb N}$\end{document} with no end extensions
Author(s) -
Shelah Saharon
Publication year - 2011
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200910129
Subject(s) - uncountable set , mathematics , combinatorics , countable set
We deal with models of Peano arithmetic (specifically with a question of Ali Enayat). The methods are from creature forcing. We find an expansion of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb N}$\end{document} such that its theory has models with no (elementary) end extensions. In fact there is a Borel uncountable set of subsets of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb N}$\end{document} such that expanding \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb N}$\end{document} by any uncountably many of them suffice. Also we find arithmetically closed \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal A}$\end{document} with no ultrafilter on it with suitable definability demand (related to being Ramsey). © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom