z-logo
Premium
Representations of MV‐algebras by sheaves
Author(s) -
Ferraioli Anna R.,
Lettieri Ada
Publication year - 2011
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200910116
Subject(s) - mathematics , sheaf , hausdorff space , pure mathematics , prime (order theory) , space (punctuation) , representation (politics) , algebra over a field , algebraic number , locally compact space , algebraic structure , combinatorics , mathematical analysis , computer science , politics , political science , law , operating system
In this paper, inspired by methods of Bigard, Keimel, and Wolfenstein ([2]), we develop an approach to sheaf representations of MV‐algebras which combines two techniques for the representation of MV‐algebras devised by Filipoiu and Georgescu ([18]) and by Dubuc and Poveda ([16]). Following Davey approach ([12]), we use a subdirect representation of MV‐algebras that is based on local MV‐algebras. This allowed us to obtain: (a) a representation of any MV‐algebras as MV‐algebra of all global sections of a sheaf of local MV‐algebras on the spectruum of its prime ideals; (b) a representation of MV‐algebras, having the space of minimal prime ideals compact, as MV‐algebra of all global sections of a Hausdorff sheaf of MV‐chains on the space of minimal prime ideals, which is a Stone space; (c) an adjunction between the category of all MV‐algebras and the category of MV‐algebraic spaces , where an MV‐algebraic space is a pair ( X, F ), where X is a compact topological space and F is a sheaf of MV‐algebras with stalks that are local (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom