z-logo
Premium
A note on the Σ 1 collection scheme and fragments of bounded arithmetic
Author(s) -
Adamowicz Zofia,
Kołodziejczyk Leszek Aleksander
Publication year - 2010
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200810043
Subject(s) - pigeonhole principle , mathematics , scheme (mathematics) , arithmetic , bounded function , arithmetic function , discrete mathematics , combinatorics , mathematical analysis
We show that for each n ≥ 1, if T 2 n does not prove the weak pigeonhole principle for Σ b n functions, then the collection scheme B Σ 1 is not finitely axiomatizable over T 2 n . The same result holds with S n 2 in place of T 2 n (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom