Premium
The polynomial and linear time hierarchies in V 0
Author(s) -
Kołodziejczyk Leszek A.,
Thapen Neil
Publication year - 2009
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200810007
Subject(s) - mathematics , bounded function , prefix , hierarchy , discrete mathematics , parity (physics) , time complexity , polynomial , polynomial hierarchy , combinatorics , arithmetic , mathematical analysis , philosophy , linguistics , physics , particle physics , economics , market economy
We show that the bounded arithmetic theory V 0 does not prove that the polynomial time hierarchy collapses to the linear time hierarchy (without parameters). The result follows from a lower bound for bounded depth circuits computing prefix parity, where the circuits are allowed some auxiliary input; we derive this from a theorem of Ajtai (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)