Premium
Indestructibility and stationary reflection
Author(s) -
Apter Arthur W.
Publication year - 2009
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200810001
Subject(s) - forcing (mathematics) , regular cardinal , mathematics , pure mathematics , combinatorics , mathematical analysis
If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ ‐strategically closed forcing and λ is weakly compact, then we show that A = { δ < κ | δ is a non‐weakly compact Mahlo cardinal which reflects stationary sets} must be unbounded in κ . This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to construct a model where no cardinal is supercompact up to a Mahlo cardinal in which the least supercompact cardinal κ is also the least strongly compact cardinal, κ 's strongness is indestructible under κ ‐strategically closed forcing, κ 's supercompactness is indestructible under κ ‐directed closed forcing not adding any new subsets of κ , and δ is Mahlo and reflects stationary sets iff δ is weakly compact. In this model, no strong cardinal δ < κ is indestructible under δ ‐strategically closed forcing. It therefore follows that it is relatively consistent for the least strong cardinal κ whose strongness is indestructible under κ ‐strategically closed forcing to be the same as the least supercompact cardinal, which also has its supercompactness indestructible under κ ‐directed closed forcing not adding any new subsets of κ (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)