z-logo
Premium
Indestructibility and stationary reflection
Author(s) -
Apter Arthur W.
Publication year - 2009
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200810001
Subject(s) - forcing (mathematics) , regular cardinal , mathematics , pure mathematics , combinatorics , mathematical analysis
If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ ‐strategically closed forcing and λ is weakly compact, then we show that A = { δ < κ | δ is a non‐weakly compact Mahlo cardinal which reflects stationary sets} must be unbounded in κ . This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to construct a model where no cardinal is supercompact up to a Mahlo cardinal in which the least supercompact cardinal κ is also the least strongly compact cardinal, κ 's strongness is indestructible under κ ‐strategically closed forcing, κ 's supercompactness is indestructible under κ ‐directed closed forcing not adding any new subsets of κ , and δ is Mahlo and reflects stationary sets iff δ is weakly compact. In this model, no strong cardinal δ < κ is indestructible under δ ‐strategically closed forcing. It therefore follows that it is relatively consistent for the least strong cardinal κ whose strongness is indestructible under κ ‐strategically closed forcing to be the same as the least supercompact cardinal, which also has its supercompactness indestructible under κ ‐directed closed forcing not adding any new subsets of κ (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom