z-logo
Premium
Decidability and Specker sequences in intuitionistic mathematics
Author(s) -
Ardeshir Mohammad,
Ramezanian Rasoul
Publication year - 2009
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200710094
Subject(s) - mathematics , decidability , sequence (biology) , limit of a sequence , monotone polygon , intuitionistic logic , axiom , bounded function , discrete mathematics , limit (mathematics) , combinatorics , propositional calculus , mathematical analysis , genetics , geometry , biology
A bounded monotone sequence of reals without a limit is called a Specker sequence. In Russian constructive analysis, Church's Thesis permits the existence of a Specker sequence. In intuitionistic mathematics, Brouwer's Continuity Principle implies it is false that every bounded monotone sequence of real numbers has a limit. We claim that the existence of Specker sequences crucially depends on the properties of intuitionistic decidable sets. We propose a schema (which we call ED ) about intuitionistic decidability that asserts “there exists an intuitionistic enumerable set that is not intuitionistic decidable” and show that the existence of a Specker sequence is equivalent to ED . We show that ED is consistent with some certain well known axioms of intuitionistic analysis as Weak Continuity Principle, bar induction, and Kripke Schema. Thus, the assumption of the existence of a Specker sequence is conceivable in intuitionistic analysis. We will also introduce the notion of double Specker sequence and study the existence of them (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom