z-logo
Premium
The universal covering homomorphism in o‐minimal expansions of groups
Author(s) -
Edmundo Mário J.,
Eleftheriou Pantelis E.
Publication year - 2007
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200610051
Subject(s) - homomorphism , mathematics , combinatorics , group (periodic table) , discrete mathematics , pure mathematics , physics , quantum mechanics
Suppose G is a definably connected, definable group in an o‐minimal expansion of an ordered group. We show that the o‐minimal universal covering homomorphism $ \tilde p $ : $ \tilde G $ → G is a locally definable covering homomorphism and π 1 ( G ) is isomorphic to the o‐minimal fundamental group π ( G ) of G defined using locally definable covering homomorphisms. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom