z-logo
Premium
Supercompactness and measurable limits of strong cardinals II: Applications to level by level equivalence
Author(s) -
Apter Arthur W.
Publication year - 2006
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200610005
Subject(s) - mathematics , regular cardinal , compact space , equivalence (formal languages) , sketch , pure mathematics , class (philosophy) , limit (mathematics) , discrete mathematics , combinatorics , mathematical analysis , algorithm , computer science , artificial intelligence
We construct models for the level by level equivalence between strong compactness and supercompactness in which for κ the least supercompact cardinal and δ ≤ κ any cardinal which is either a strong cardinal or a measurable limit of strong cardinals, 2 δ > δ + and δ is < 2 δ supercompact. In these models, the structure of the class of supercompact cardinals can be arbitrary, and the size of the power set of κ can essentially be made as large as desired. This extends and generalizes [5, Theorem 2] and [4, Theorem 4]. We also sketch how our techniques can be used to establish a weak indestructibility result. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here