Premium
n ‐linear weakly Heyting algebras
Author(s) -
Celani Sergio A.
Publication year - 2006
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200510041
Subject(s) - heyting algebra , mathematics , intuitionistic logic , intermediate logic , variety (cybernetics) , generalization , axiom , pure mathematics , algebra over a field , modal logic , propositional calculus , discrete mathematics , modal , computer science , chemistry , theoretical computer science , description logic , mathematical analysis , statistics , geometry , polymer chemistry
The present paper introduces and studies the variety ℋ n of n ‐linear weakly Heyting algebras. It corresponds to the algebraic semantic of the strict implication fragment of the normal modal logic K with a generalization of the axiom that defines the linear intuitionistic logic or Dummett logic. Special attention is given to the variety ℋ 2 that generalizes the linear Heyting algebras studied in [10] and [12], and the linear Basic algebras introduced in [2]. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)