z-logo
Premium
Dense subtrees in complete Boolean algebras
Author(s) -
König Bernhard
Publication year - 2006
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200510033
Subject(s) - complete boolean algebra , mathematics , boolean algebras canonically defined , free boolean algebra , two element boolean algebra , stone's representation theorem for boolean algebras , interior algebra , boolean algebra , distributivity , homogeneous , ultrafilter , tree (set theory) , filter (signal processing) , discrete mathematics , algebra over a field , combinatorics , pure mathematics , distributive property , algebra representation , jordan algebra , computer science , computer vision
We characterize complete Boolean algebras with dense subtrees. The main results show that a complete Boolean algebra contains a dense tree if its generic filter collapses the algebra's density to its distributivity number and the reverse holds for homogeneous algebras. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom