Premium
Dense subtrees in complete Boolean algebras
Author(s) -
König Bernhard
Publication year - 2006
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200510033
Subject(s) - complete boolean algebra , mathematics , boolean algebras canonically defined , free boolean algebra , two element boolean algebra , stone's representation theorem for boolean algebras , interior algebra , boolean algebra , distributivity , homogeneous , ultrafilter , tree (set theory) , filter (signal processing) , discrete mathematics , algebra over a field , combinatorics , pure mathematics , distributive property , algebra representation , jordan algebra , computer science , computer vision
We characterize complete Boolean algebras with dense subtrees. The main results show that a complete Boolean algebra contains a dense tree if its generic filter collapses the algebra's density to its distributivity number and the reverse holds for homogeneous algebras. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)