z-logo
Premium
Kripke‐style semantics for many‐valued logics
Author(s) -
Montagna Franco,
Sacchetti Lorenzo
Publication year - 2003
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200310068
Subject(s) - kripke semantics , kripke structure , mathematics , modal logic , axiom , algebraic semantics , normal modal logic , semantics (computer science) , modal , discrete mathematics , algebra over a field , algebraic number , computer science , pure mathematics , algorithm , programming language , model checking , mathematical analysis , chemistry , geometry , polymer chemistry
This paper deals with Kripke‐style semantics for many‐valued logics. We introduce various types of Kripke semantics, and we connect them with algebraic semantics. As for modal logics, we relate the axioms of logics extending MTL to properties of the Kripke frames in which they are valid. We show that in the propositional case most logics are complete but not strongly complete with respect to the corresponding class of complete Kripke frames, whereas in the predicate case there are important many‐valued logics like BL, Ł and Π, which are not even complete with respect to the class of all predicate Kripke frames in which they are valid. Thus although very natural, Kripke semantics seems to be slightly less powerful than algebraic semantics. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here