z-logo
Premium
A fixed point theorem for o‐minimal structures
Author(s) -
Wong KamChau
Publication year - 2003
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200310065
Subject(s) - mathematics , lemma (botany) , simplex , fixed point , fixed point theorem , triangulation , combinatorics , discrete mathematics , pure mathematics , mathematical analysis , geometry , ecology , poaceae , biology
We prove a definable analogue to Brouwer's Fixed Point Theorem for o‐minimal structures of real closed field expansions: A continuous definable function mapping from the unit simplex into itself admits a fixed point, even though the underlying space is not necessarily topologically complete. Our proof is direct and elementary; it uses a triangulation technique for o‐minimal functions, with an application of Sperner's Lemma. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here