z-logo
Premium
Metric spaces and the axiom of choice
Author(s) -
De la Cruz Omar,
Hall Eric,
Howard Paul,
Keremedis Kyriakos,
Rubin Jean E.
Publication year - 2003
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200310049
Subject(s) - axiom of choice , mathematics , metrization theorem , zermelo–fraenkel set theory , metric space , axiom , urelement , axiom independence , constructive set theory , topological space , pure mathematics , metric (unit) , discrete mathematics , set theory , mathematical analysis , separable space , set (abstract data type) , computer science , geometry , programming language , operations management , economics
We study conditions for a topological space to be metrizable, properties of metrizable spaces, and the role the axiom of choice plays in these matters.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here