Premium
Metric spaces and the axiom of choice
Author(s) -
De la Cruz Omar,
Hall Eric,
Howard Paul,
Keremedis Kyriakos,
Rubin Jean E.
Publication year - 2003
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.200310049
Subject(s) - axiom of choice , mathematics , metrization theorem , zermelo–fraenkel set theory , metric space , axiom , urelement , axiom independence , constructive set theory , topological space , pure mathematics , metric (unit) , discrete mathematics , set theory , mathematical analysis , separable space , set (abstract data type) , computer science , geometry , programming language , operations management , economics
We study conditions for a topological space to be metrizable, properties of metrizable spaces, and the role the axiom of choice plays in these matters.