z-logo
Premium
On Σ 1 ‐definable Functions Provably Total in I ∏   1 −
Author(s) -
Bigorajska Teresa
Publication year - 1995
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.19950410111
Subject(s) - mathematics , commutative property , combinatorics , natural number , unit (ring theory) , commutative ring , scheme (mathematics) , discrete mathematics , mathematical analysis , mathematics education
We prove the following theorem: Let φ( x ) be a formula in the language of the theory PA − of discretely ordered commutative rings with unit of the form ∃yφ′( x,y ) with φ′ and let ∈ Δ 0 and let f φ: ℕ → ℕ such that f φ ( x ) = y iff φ′( x,y ) & (∀ z < y ) φ′( x,z ). If I ∏   1 −∈(∀ x ≥ 0), φ then there exists a natural number K such that I ∏   1 −⊢ ∃y∀x( x > y ⟹ ƒφ( x ) < x K ). Here I ∏   1 −1 − denotes the theory PA − plus the scheme of induction for formulas φ( x ) of the form ∀ y φ′( x , y ) (with φ′) with φ′ ∈ Δ 0 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom