Premium
Prefinitely axiomatizable modal and intermediate logics
Author(s) -
Kracht Marcus
Publication year - 1993
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.19930390136
Subject(s) - bounding overwatch , mathematics , modal , t norm fuzzy logics , property (philosophy) , kripke semantics , normal modal logic , monoidal t norm logic , lattice (music) , modal logic , accessibility relation , pure mathematics , construct (python library) , algebra over a field , computer science , epistemology , artificial intelligence , physics , philosophy , chemistry , membership function , fuzzy set , polymer chemistry , fuzzy number , acoustics , programming language , fuzzy logic
A logic Λ bounds a property P if all proper extensions of Λ have P while Λ itself does not. We construct logics bounding finite axiomatizability and logics bounding finite model property in the lattice of intermediate logics and in the lattice of normal extensions of K4.3. MSC: 03B45, 03B55.