z-logo
Premium
Seperating the intrinsic complexity and the derivational complexity of the word problem for finitely presented groups
Author(s) -
Cohen Daniel E.,
Madlener Klaus,
Otto Friedrich
Publication year - 1993
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.19930390117
Subject(s) - turing machine , word problem (mathematics education) , mathematics , complexity class , word (group theory) , kolmogorov complexity , mathematical proof , time hierarchy theorem , time complexity , group (periodic table) , computational complexity theory , natural number , algorithm , discrete mathematics , universal turing machine , theoretical computer science , computer science , arithmetic , chemistry , geometry , organic chemistry , computation
A pseudo‐natural algorithm for the word problem of a finitely presented group is an algorithm which not only tells us whether or not a word w equals 1 in the group but also gives a derivation of 1 from w when w equals 1. In [13], [14] Madlener and Otto show that, if we measure complexity of a primitive recursive algorithm by its level in the Grzegorczyk hierarchy, there are groups in which a pseudo‐natural algorithm is arbitrarily more complicated than an algorithm which simply solves the word problem. In a given group the lowest degree of complexity that can be realised by a pseudo‐natural algorithm is essentially the derivational complexity of that group. Thus the result separates the derivational complexity of the word problem of a finitely presented group from its intrinsic complexity. The proof given in [13] involves the construction of a finitely presented group G from a Turing machine T such that the intrinsic complexity of the word problem for G reflects the complexity of the halting problem of T , while the derivational complexity of the word problem for G reflects the runtime complexity of T. The proof of one of the crucial lemmas in [13] is only sketched, and part of the purpose of this paper is to give the full details of this proof. We will also obtain a variant of their proof, using modular machines rather than Turing machines. As for several other results, this simplifies the proofs considerably. MSC: 03D40, 20F10.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom