Premium
ORDINAL NUMBERS IN ARITHMETIC PROGRESSION
Author(s) -
Bagemihl Frederick,
Bagemihl F.
Publication year - 1992
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.19920380148
Subject(s) - mathematics , arithmetic progression , arithmetic , subclass , class (philosophy) , sequence (biology) , second order arithmetic , type (biology) , discrete mathematics , combinatorics , artificial intelligence , computer science , peano axioms , ecology , genetics , antibody , immunology , biology
The class of all ordinal numbers can be partitioned into two subclasses in such a way that neither subclass contains an arithmetic progression of order type ω, where an arithmetic progression of order type τ means an increasing sequence of ordinal numbers (ß + δγ)γ<γ<>r, δ ≠ 0.