z-logo
Premium
A NOTATION SYSTEM FOR ORDINAL USING Ψ‐FUNCTIONS ON INACCESSIBLE MAHLO NUMBERS
Author(s) -
Pfeiffer Helmut,
Pfeiffer H.
Publication year - 1992
Publication title -
mathematical logic quarterly
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.473
H-Index - 28
eISSN - 1521-3870
pISSN - 0942-5616
DOI - 10.1002/malq.19920380142
Subject(s) - mathematics , hierarchy , recursion (computer science) , notation , discrete mathematics , function (biology) , combinatorics , algebra over a field , pure mathematics , arithmetic , algorithm , evolutionary biology , economics , market economy , biology
G. Jäger gave in Arch. Math. Logik Grundlagenforsch. 24 (1984), 49‐62, a recursive notation system on a basis of a hierarchy Iαß of α‐inaccessible regular ordinals using collapsing functions following W. Buchholz in Ann. Pure Appl. Logic 32 (1986), 195‐207. Jäger's system stops, when ordinals α with Iα0 = α enter. This border is now overcome by introducing additional a hierarchy Jαß of weakly inaccessible Mahlo numbers, which is defined similarly to the Jäger hierarchy. An ordinal μ is called Mahlo, if every normal‐function f : μ → μ has regular fixpoints. Collapsing is defined for both Mahlo and simply regular ordinals such that for every Mahlo ordinal μ out of the J‐hierarchy Ψμα is a regular σ such that Iσ0 = σ. For these regular σ again collapsing functions Ψσ are defined. To get a proper systematical order into the collapsing procedure, a pair of ordinals is associated to σ and α, and the definition of Ψσα is given by recursion on a suitable well‐ordering of these pairs. Thus a fairly large system of ordinal notations can be established. It seems rather straightforward, how to extend this setting further.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here