z-logo
Premium
Degradable Polymer Films Made from Poly(salicylic‐acid‐ co ‐sebacic acid) and Poly(sebacic anhydride)/Poly(adipic anhydride) Blends: Degradation Kinetics and Use as Sacrificial Layers for Polymer Multilayer Systems
Author(s) -
Deng Zhuoling,
Riga Esther K.,
Lienkamp Karen
Publication year - 2020
Publication title -
macromolecular chemistry and physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.57
H-Index - 112
eISSN - 1521-3935
pISSN - 1022-1352
DOI - 10.1002/macp.202000106
Subject(s) - sebacic acid , materials science , polymer chemistry , polymer , crystallinity , polymer blend , degradation (telecommunications) , chemical engineering , copolymer , composite material , telecommunications , computer science , engineering
Two approaches to obtain fast‐degrading polymer films based on poly(sebacic anhydride) (PSA) are presented, both of which target polymer films with a lower degree of crystallinity than pure PSA homopolymer: first, thin films are prepared from poly(adipic anhydride)/poly(sebacic anhydride) blends at different ratios, and second, films are made from the copolymer poly(salicylic acid‐ co ‐sebacic acid). These films are intended as sacrificial layers for self‐regenerating functional coatings, for example, to regenerate antimicrobial surface activity. The degradation kinetics of these films are analyzed by surface plasmon resonance spectroscopy. The results of the blends approach indicate that the blend degradation rate is accelerated only in the initial degradation phase (compared to PSA). The degradation kinetics study of the poly(salicylic‐acid‐ co ‐sebacic acid) film shows that this copolymer degrades faster than poly(sebacic anhydride) initially, releasing antimicrobial salicylic acid in the process. However, its degradation rate slows down at a mass loss >60% and approaches the PSA degradation curve at longer degradation times. When tested as sacrificial layer in self‐regenerating antimicrobial polymer stacks, it is found that the degradation rate is too low for successful layer shedding.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here