Premium
Hydrolytic Stability of Methacrylamide and Methacrylate in Gelatin Methacryloyl and Decoupling of Gelatin Methacrylamide from Gelatin Methacryloyl through Hydrolysis
Author(s) -
Zheng Jing,
Zhu Mengxiang,
Ferracci Gaia,
Cho NamJoon,
Lee Bae Hoon
Publication year - 2018
Publication title -
macromolecular chemistry and physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.57
H-Index - 112
eISSN - 1521-3935
pISSN - 1022-1352
DOI - 10.1002/macp.201800266
Subject(s) - methacrylamide , gelatin , polymer chemistry , methacrylate , chemistry , hydrolysis , aqueous solution , polymerization , copolymer , polymer , organic chemistry , acrylamide
Gelatin methacryloyl (GelMA; GM) is a promising nature‐derived photocurable material that can mimic the extracellular matrix because GelMA features tailorable mechanical properties, proteolytic degradation, and good cell adhesion. GelMA contains not only methacrylamide but also methacrylate. However, the hydrolytic stability of methacrylamide and methacrylate groups of GelMA in aqueous solutions has not been scrutinized. Here, the structural change of GelMA through hydrolysis is investigated for the first time. The structural change of hydrolyzed GelMA is quantitatively identified using colorimetric and 1 H NMR methods. The methacrylate groups decompose markedly at high pH solutions, but the methacrylamide groups remain stable. Further, pure gelatin methacrylamide is successfully decoupled from GelMA for a better understanding of GelMA structure and future use for biomedical applications.