z-logo
Premium
Role of Self‐Polarization in a Single‐Step Controlled Synthesis of Linear and Branched Polymer Nanoparticles
Author(s) -
Visaveliya Nikunjkumar,
Köhler J. Michael
Publication year - 2015
Publication title -
macromolecular chemistry and physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.57
H-Index - 112
eISSN - 1521-3935
pISSN - 1022-1352
DOI - 10.1002/macp.201500091
Subject(s) - polyelectrolyte , polymer , materials science , nanoparticle , microfluidics , nanotechnology , polymerization , nanometre , linear polymer , chemical engineering , aqueous solution , polymer chemistry , chemistry , composite material , organic chemistry , engineering
In this work, the synthesis of linear (with high aspect ratio) and branched polymer nanoparticles (Nps) via single‐step nanoassembly in a semi‐microfluidic platform is reported. The shape‐controlled synthesis of polymeric material at nanometer scale level remains challenging due to their amorphous or semicrystalline nature. A key to success of this strategy to obtain the compact linear and branched shape of polymer Nps in a single‐step is the use of appropriate concentration of polyelectrolyte molecules in the aqueous phase, and microfluidic technique due to their advantages for providing precise mixing, efficient volume transfer, emulsification, and very homogeneous reaction conditions. The in situ nanoassembly of growing polymer Nps at critical stages during the ongoing polymerization obviously depends on the number of electrical charges supplied by accessible polyelectrolyte that is explained here in detail. The impacts of the different parameters such as concentration of polyelectrolytes, their chain‐lengths, volume ratios, flow rate ratios, and so forth, have been systematically investigated in order to obtain linear and branched polymer nanoparticles.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here