Premium
Polyethylene Prodrugs Using Precisely Placed Pharmaceutical Agents
Author(s) -
Leonard James K.,
Turek Diane,
Sloan Kenneth B.,
Wagener Kenneth B.
Publication year - 2010
Publication title -
macromolecular chemistry and physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.57
H-Index - 112
eISSN - 1521-3935
pISSN - 1022-1352
DOI - 10.1002/macp.200900432
Subject(s) - polymer , prodrug , chemistry , hydrolysis , polymerization , polymer chemistry , organic chemistry , naproxen , drug delivery , polyethylene , linker , combinatorial chemistry , materials science , medicine , biochemistry , alternative medicine , pathology , computer science , operating system
Polyethylene‐based polymeric prodrugs have been prepared by acyclic diene metathesis (ADMET) polymerization; this condensation type, step growth polymerization, affords controlled polymer architectures via exact methylene run lengths between drug branches. Polyethylene was synthesized with the nonsteroidal anti‐inflammatory drug (NSAID) branches ibuprofen and naproxen attached at every 21st backbone carbon through a hydrolysable ester linkage. These ester linkages can have their reactivity tuned by using a variety of spacers that link the drug to the polymer backbone. Two types of spacers, tetraethylene glycol (TEG, hydrophilic) and decanediol (hydrophobic), were incorporated between the drugs and the polymer backbone to observe the effect of spacer properties on the rate of drug release. The rate of hydrolysis and subsequent release of drug was monitored as a direct effect of the spacer and type of reactive linker. With the primary structure of the polymers perfectly known, making such subtle changes to these structures has a dramatic influence on their physical properties. The polymers discussed herein are characterized with NMR, IR, TGA, and DSC. The rate at which these materials hydrolyze and release their pharmaceutical species via enzymatic or chemical hydrolysis was monitored by UV‐vis. Tailoring the type of spacer and hydrolysable linker to a particular drug offers a new class of polyethylene with controllable features that can be used in the application of a new drug delivery material.