z-logo
Premium
Ultrathin hydroxyapatite coating on pure magnesium substrate prepared by pulsed electron ablation technique
Author(s) -
Dvorsky Drahomir,
Gambardella Alessandro,
Kubasek Jiri,
Berni Matteo,
Vojtech Dalibor
Publication year - 2020
Publication title -
materials and corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.487
H-Index - 55
eISSN - 1521-4176
pISSN - 0947-5117
DOI - 10.1002/maco.202011721
Subject(s) - corrosion , materials science , coating , biocompatibility , magnesium , scanning electron microscope , microstructure , magnesium alloy , metallurgy , alloy , composite material , chemical engineering , engineering
Abstract Magnesium (Mg) as a potential material for biodegradable implants is attractive due to its mechanical similarity to the bone tissue and nontoxic corrosion products. However, the rapid corrosion rate of bare magnesium is associated with hydrogen release, which may complicate the healing process. The corrosion rate may be reduced by suitable alloying, but concurrently the biocompatibility of such alloy might be deteriorated. Another way of reduction of the corrosion rate is coating. Hydroxyapatite (HA)‐based coating is considered to improve biocompatibility as well as decrease the corrosion rate by the barrier effect. In this study, ultrathin (150 nm) HA and HA containing Sr coatings are deposited via pulsed electron ablation technique on pure Mg. The microstructure of the coating was assessed by scanning electron microscopy. Electrochemical methods were used to investigate the corrosion properties of prepared coatings. The materials covered by this layer were characterized by superior corrosion behavior, with corrosion rates of coated samples up to five times lower as compared with the uncoated ones. Such coating is the thinnest coating found in the literature sources.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here