Premium
Comparison between field and laboratory steam oxidation testing on aluminide coatings on P92
Author(s) -
Agüero A.,
González V.,
Gutiérrez M.,
Knödler R.,
Muelas R.,
Straub S.
Publication year - 2011
Publication title -
materials and corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.487
H-Index - 55
eISSN - 1521-4176
pISSN - 0947-5117
DOI - 10.1002/maco.201005874
Subject(s) - aluminide , spallation , metallurgy , materials science , steam turbine , isothermal process , oxide , aluminium , composite material , intermetallic , alloy , mechanical engineering , engineering , thermodynamics , physics , quantum mechanics , neutron
Steam oxidation has become an important issue for steam power plants as operating temperatures increase from the current 550 to 600–650 °C. For the last 10 years several groups have been carrying out steam oxidation testing of both uncoated substrates and coatings in the laboratory. On the other hand, field testing results are very scarce. In this paper, a comparison of laboratory steam oxidation testing with field test results carried out by Alstom at the Kraftwerk Westfalen power station located in Hamm, Germany will be presented. Both slurry deposited aluminide coatings and uncoated P92 steel have been included in the study. Under steam (atmospheric pressure) and isothermal conditions in the laboratory at 650 °C, spallation of oxides formed on ferritic steels occurs after significantly longer time when compared to exposure to real operating conditions. Oxide spallation results in serious damage in steam power plants by obstructing heat exchanger tubes, erosion of valves and turbine blades, etc. Moreover, the thickness of the oxide scales formed under field testing conditions is significantly higher after similar exposure. On the other hand, aluminide coated P92, which exhibit thickness through cracks, have shown to be stable in the laboratory for up to 60 000 h at 650 °C under steam, without evidence of crack propagation. However, field test results indicate that some degree of crack propagation occurs but without causing substrate attack up to 21 700 h of exposure. Moreover, the aluminium oxide observed in both laboratory and field tested specimens is different.