Premium
Effect of cathodic protection on macrocell currents: A viable method to monitor and control the efficiency of CP?
Author(s) -
Schwarz W.,
Tritthart J.
Publication year - 2009
Publication title -
materials and corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.487
H-Index - 55
eISSN - 1521-4176
pISSN - 0947-5117
DOI - 10.1002/maco.200805033
Subject(s) - cathodic protection , corrosion , coating , materials science , chloride , electrical conductor , composite material , anode , macrocell , forensic engineering , electrode , metallurgy , computer science , chemistry , engineering , telecommunications , base station
Corrosion protection of steel reinforcement in concrete structures by cathodic protection (CP) is a cost effective, reliable, and widely accepted method to stop and prevent the corrosion of the steel reinforcement. The efficiency of CP is usually monitored by the “24 h, 100 mV depolarization criterion,” a purely empirical criterion whose implementation is cost and labor intensive and that does not allow online control of CP. Within an extended research project on CP applied to concrete members of a highway bridge exposed to penetrating moisture, three sets of macrocells (MC), each composed of five MC sensors, were installed in conjunction with concrete resistance sensors and silver/silver chloride reference cells. Chloride profiles were determined from the cored or drilled powder originating from the installation of sensors and from drilling cores. Corrosion currents, steel potentials, and concrete resistance were monitored over a period of 1 year before, after installing the CP systems (which remained switched off for half a year for evaluating the effect of the conductive coating), and after start‐up of the CP systems. The CP systems applied consist of a moisture resistant conductive coating. As expected CP has a pronounced effect on local MC currents: Anodic MC currents were reduced or changed into cathodic currents, whereas cathodic currents were only weakly influenced. By adjusting the applied protection current all anodic MC currents may be changed into cathodic MC currents. Results indicate that the 100 mV depolarization criterion is a conservative criterion in atmospherically exposed concrete; it is not reliable in strongly wetted concrete. There was no consistent correlation between the CP induced changes in the local MC currents and 24 h depolarization values indicating that large potential shifts induced by CP do not necessarily imply overprotection. Results show that monitoring MC currents before, during, and after CP operation allows to demonstrate in a transparent way the effect of CP on the corrosion of the steel reinforcement. Online monitoring of MC currents is proposed as a viable and comprehensible method to monitor and control the efficiency of CP.