Premium
The electrochemical behaviour of Ti‐13Nb‐13Zr alloy in various solutions
Author(s) -
Assis S. L.,
Wolynec S.,
Costa I.
Publication year - 2008
Publication title -
materials and corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.487
H-Index - 55
eISSN - 1521-4176
pISSN - 0947-5117
DOI - 10.1002/maco.200804148
Subject(s) - electrolyte , alloy , dielectric spectroscopy , materials science , electrochemistry , saturated calomel electrode , corrosion , oxide , open circuit voltage , electrode , chemical engineering , layer (electronics) , composite material , metallurgy , chemistry , reference electrode , voltage , physics , quantum mechanics , engineering
The electrochemical behaviour of a near‐ β Ti‐13Nb‐13Zr alloy for the application as implants was investigated in various solutions. The electrolytes used were 0.9 wt% NaCl solution, Hanks' solution and a culture medium known as minimum essential medium (MEM) composed of salts, vitamins and amino acids, all at 37 °C. The electrochemical behaviour was investigated by the following electrochemical techniques: open circuit potential measurements as a function of time, electrochemical impedance spectroscopy (EIS) and determination of polarisation curves. The obtained results showed that the Ti alloy was passive in all electrolytes. The EIS results were analysed using an equivalent electrical circuit representing a duplex structure oxide layer, composed of an inner barrier layer, mainly responsible for the alloy corrosion resistance, and an outer and porous layer that has been associated to osteointegration ability. The properties of both layers were dependent on the electrolyte used. The results suggested that the thickest porous layer is formed in the MEM solution whereas the impedance of the barrier layer formed in this solution was the lowest among the electrolytes used. The polarisation curves showed a current increase at potentials around 1300 mV versus saturated calomel electrode (SCE), and this increase was also dependent on the electrolyte used. The highest increase in current density was also associated to the MEM solution suggesting that this is the most aggressive electrolyte to the Ti alloy among the three tested solutions.