Premium
HVOF coatings for steam oxidation protection
Author(s) -
Agüero A.,
Muelas R.,
Gonzalez V.
Publication year - 2008
Publication title -
materials and corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.487
H-Index - 55
eISSN - 1521-4176
pISSN - 0947-5117
DOI - 10.1002/maco.200804121
Subject(s) - materials science , thermal spraying , metallurgy , coating , feal , creep , supercritical fluid , context (archaeology) , aluminium , metallography , nichrome , chromium , microstructure , alloy , composite material , intermetallic , chemistry , paleontology , organic chemistry , biology
In the context of the European project ‘Coatings for Supercritical Steam Cycles’ (SUPERCOAT), the use of steam oxidation resistant coatings on currently available ferritic materials with high creep strength but poor oxidation resistance was investigated in order to allow increase in the operating temperature of steam power plants from 550 to 650 °C. Among the explored coating techniques for this application, chosen on the basis of being potentially appropriate for coating steam turbine components, High Velocity Oxy Fuel (HVOF) thermal spray has resulted in one of the most successful techniques. Different alloyed materials such as FeCrAl, NiCrSiFeB, FeAl, NiCr and FeCr have been deposited, optimized and tested under flowing steam at 650 °C. Characterization of as deposited and tested samples by metallography, SEM‐EDS and XRD was carried out. Some of these coatings form protective pure chromium or aluminium oxides exhibiting excellent behaviour for at least 15 000 h of exposure, whereas others form less stable complex mixed oxides which nevertheless grow at considerably slower rates than the oxides formed on uncoated P92 (9 wt% Cr ferritic steel).