Premium
Galvanic compatibility of corrosion protective coatings with AA7075 aluminum alloy
Author(s) -
Lodhi Z. F.,
Hamer W. J.,
Mol J. M. C.,
Terryn H.,
de Wit J. H. W.
Publication year - 2008
Publication title -
materials and corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.487
H-Index - 55
eISSN - 1521-4176
pISSN - 0947-5117
DOI - 10.1002/maco.200804095
Subject(s) - alloy , materials science , galvanic anode , metallurgy , zinc , corrosion , dissolution , aluminium , galvanic cell , 6111 aluminium alloy , pitting corrosion , electrolyte , cobalt , cathodic protection , anode , electrode , chemical engineering , chemistry , engineering
The galvanic compatibility of aerospace aluminum alloy AA7075 with cadmium (Cd), zinc (Zn), and zinc–cobalt–iron (Zn–Co–Fe, 32–37%Co and 1%Fe) alloys was investigated. A comparison of open circuit potential [OCP vs. saturated calomel electrode (SCE)] measurements in 0.6 mM NaCl showed that all coatings would act anodically to AA7075 with an exception of Zn–Co–Fe (37%Co + 1%Fe) alloy which was electropositive to AA7075. During the zero resistance ammetry (ZRA) measurement in 0.6 M NaCl electrolyte the coupled OCP and current density were measured during 7 days of immersion and both Zn and Cd acted anodic and thus sacrificial to AA7075. Galvanic coupling of AA7075 with (37%Co + 1%Fe) Zn–Co–Fe alloy resulted in the consequent dissolution of the AA7075 aluminum alloy. In contrast, Zn–Co–Fe (32%Co + 1%Fe) alloy was found to be anodic to AA7075 during the first 26 h of immersion but after dezincification and cobalt enrichment at the surface became cathodic to the AA7075 aluminum alloy. During coupling with Zn, some pitting was also observed on AA7075.