Premium
Effect of potential on the corrosion behavior of a new titanium alloy for dental implant applications in fluoride media
Author(s) -
AlMayouf A. M.,
AlSwayih A. A.,
AlMobarak N. A.
Publication year - 2004
Publication title -
materials and corrosion
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.487
H-Index - 55
eISSN - 1521-4176
pISSN - 0947-5117
DOI - 10.1002/maco.200303697
Subject(s) - corrosion , fluoride , dielectric spectroscopy , alloy , materials science , titanium , oxide , cathodic protection , electrochemistry , inorganic chemistry , open circuit voltage , titanium alloy , metallurgy , electrode , chemistry , physics , quantum mechanics , voltage
The effect of fluoride ion concentration and pH on the corrosion behavior of TCA (60 Ti 10 Ag 30 Cu), which is a new Ti alloy with low melting point, pure Titanium (Ti), and TAV (TiAl6V4) was examined using open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) at different potentials. Results show that the corrosion resistance of TCA and Ti decrease at anodic potentials compared with results obtained at OCP. At one potential the corrosion resistance decrease depends on NaF concentration and pH. TAV shows less resistance against corrosion in fluoride containing saliva. TCA has potentials more positive than Ti and TAV due to surface enrichment of Cu and Ag as Ti dissolves which accelerates the cathodic reaction. Fluoride ion may not hinder the growth of oxide layers on the surfaces of the electrodes. It will have influence on the properties of the oxide layer causing them to be not protective against corrosion in acid media containing fluoride ions.