z-logo
Premium
Development and Characterization of PLGA‐Based Multistage Delivery System for Enhanced Payload Delivery to Targeted Vascular Endothelium
Author(s) -
PalmaChavez Jorge A.,
Fuentes Kevin,
Applegate Brian E.,
Jo Javier A.,
Charoenphol Phapanin
Publication year - 2021
Publication title -
macromolecular bioscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.924
H-Index - 105
eISSN - 1616-5195
pISSN - 1616-5187
DOI - 10.1002/mabi.202000377
Subject(s) - plga , drug delivery , nanoparticle , targeted drug delivery , chemistry , drug carrier , endothelium , nanotechnology , biophysics , biomedical engineering , materials science , medicine , biology
Vascular‐targeted drug delivery remains an attractive platform for therapeutic and diagnostic interventions in human diseases. This work focuses on the development of a poly‐lactic‐co‐glycolic‐acid (PLGA)‐based multistage delivery system (MDS). MDS consists of two stages: a micron‐sized PLGA outer shell and encapsulated drug‐loaded PLGA nanoparticles. Nanoparticles with average diameters of 76, 119, and 193 nm are successfully encapsulated into 3–6 µm MDS. Sustained in vitro release of nanoparticles from MDS is observed for up to 7 days. Both MDS and nanoparticles arebiocompatible with human endothelial cells. Sialyl‐Lewis‐A (sLe A ) is successfully immobilized on the MDS and nanoparticle surfaces to enable specific targeting of inflamed endothelium. Functionalized MDS demonstrates a 2.7‐fold improvement in endothelial binding compared to PLGA nanoparticles from human blood laminar flow. Overall, the presented results demonstrate successful development and characterization of MDS and suggest that MDS can serve as an effective drug carrier, which can enhance the margination of nanoparticles to the targeted vascular wall.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here