Premium
Temporary/Permanent Dual Cross‐Link Gels Formed of a Bioactive Lactose‐Modified Chitosan
Author(s) -
Sacco Pasquale,
Furlani Franco,
Marfoglia Andrea,
Cok Michela,
Pizzolitto Chiara,
Marsich Eleonora,
Donati Ivan
Publication year - 2020
Publication title -
macromolecular bioscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.924
H-Index - 105
eISSN - 1616-5195
pISSN - 1616-5187
DOI - 10.1002/mabi.202000236
Subject(s) - genipin , self healing hydrogels , boric acid , biocompatibility , viscoelasticity , chemistry , polymer , chitosan , toughness , chemical engineering , lactose , materials science , polymer chemistry , composite material , organic chemistry , engineering
Mounting evidences have recognized that dual cross‐link and double‐network gels can promisingly recapitulate the complex living tissue architecture and overcome mechanical limitations of conventional scaffolds used hitherto in regenerative medicine. Here, dual cross‐link gels formed of a bioactive lactose‐modified chitosan reticulated via both temporary (boric acid‐based) and permanent (genipin‐based) cross‐linkers are reported. While boric acid rapidly binds to lactitol flanking diols increasing the overall viscosity, a slow temperature‐driven genipin binding process takes place allowing for network strengthening. Combination of frequency and stress sweep experiments in the linear stress–strain region shows that ultimate gel strength, toughness, and viscoelasticity depend on polymer‐to‐genipin molar ratio. Notably, herewith it is demonstrated that linear stretching correlates with strain energy dissipation through boric acid binding/unbinding dynamics. Strain‐hardening effect in the nonlinear regime, along with good biocompatibility in vitro, points at an interesting role of present system as biological extracellular matrix substitute.