z-logo
Premium
Incorporating Si 3 N 4 into PEEK to Produce Antibacterial, Osteocondutive, and Radiolucent Spinal Implants
Author(s) -
Pezzotti Giuseppe,
Marin Elia,
Adachi Tetsuya,
Lerussi Federica,
Rondinella Alfredo,
Boschetto Francesco,
Zhu Wenliang,
Kitajima Takashi,
Inada Kosuke,
McEntire Bryan J.,
Bock Ryan M.,
Bal B. Sonny,
Mazda Osam
Publication year - 2018
Publication title -
macromolecular bioscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.924
H-Index - 105
eISSN - 1616-5195
pISSN - 1616-5187
DOI - 10.1002/mabi.201800033
Subject(s) - peek , radiodensity , materials science , composite material , biomaterial , biocompatibility , implant , bioceramic , polymer , biomedical engineering , nanotechnology , surgery , medicine , radiography , metallurgy
Polyetheretherketone (PEEK) is a popular polymeric biomaterial which is primarily used as an intervertebral spacer in spinal fusion surgery; but it is developed for trauma, prosthodontics, maxillofacial, and cranial implants. It has the purported advantages of an elastic modulus which is similar to native bone and it can be easily formed into custom 3D shapes. Nevertheless, PEEK's disadvantages include its poor antibacterial resistance, lack of bioactivity, and radiographic transparency. This study presents a simple approach to correcting these three shortcomings while preserving the base polymer's biocompatibility, chemical stability, and elastic modulus. The proposed strategy consists of preparing a PEEK composite by dispersing a minor fraction (i.e., 15 vol%) of a silicon nitride (Si 3 N 4 ) powder within its matrix. In vitro tests of PEEK composites with three Si 3 N 4 variants—β‐Si 3 N 4 , α‐Si 3 N 4 , and β‐SiYAlON—demonstrate significant improvements in the polymer's osteoconductive versus SaOS‐2 cells and bacteriostatic properties versus gram‐positive Staphylococcus epidermidis bacteria. These properties are clearly a consequence of adding the bioceramic dispersoids, according to chemistry similar to that previously demonstrated for bulk Si 3 N 4 ceramics in terms of osteogenic behavior (vs both osteosarcoma and mesenchymal progenitor cells) and antibacterial properties (vs both gram‐positive and gram‐negative bacteria).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here