Premium
Injectable Polysaccharide Hydrogels as Biocompatible Platforms for Localized and Sustained Delivery of Antibiotics for Preventing Local Infections
Author(s) -
Li Ziyi,
He Chaoliang,
Yuan Baoming,
Dong Xiaoming,
Chen Xuesi
Publication year - 2017
Publication title -
macromolecular bioscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.924
H-Index - 105
eISSN - 1616-5195
pISSN - 1616-5187
DOI - 10.1002/mabi.201600347
Subject(s) - self healing hydrogels , biocompatibility , in vivo , biocompatible material , chemistry , drug delivery , polysaccharide , microbiology and biotechnology , biomedical engineering , biochemistry , polymer chemistry , medicine , biology , organic chemistry
Biocompatible and antibacterial hydrogels have received increasing attention for preventing local bacterial infections. In this study, a type of polysaccharide hydrogels is prepared via the Schiff‐based reaction at physiological conditions. The gelation time and mechanical property of the hydrogels are found to be dependent on the polysaccharide concentration and the polysaccharide weight ratio. 3‐(4,5‐Dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and live/dead assay indicate that the hydrogels display nontoxicity in vitro. After subcutaneous injection into rats, the hydrogels exhibit an acceptable biocompatibility in vivo. Furthermore, the bacterial inhibition tests by shaking flask method and agar disc‐diffusion method demonstrate that the ceftriaxone‐sodium‐loaded hydrogels have remarkable antibacterial properties in vitro. The in vivo anti‐infective tests further display that the antibiotic‐loaded hydrogels display excellent anti‐infective efficacies in both superficial and deep tissue infection. Consequently, the injectable and biocompatible polysaccharide hydrogels may serve as promising platforms for localized, sustained delivery of antibiotics for preventing local infections.