Premium
Thick Soft Tissue Reconstruction on Highly Perfusive Biodegradable Scaffolds
Author(s) -
Mandoli Corrado,
Mecheri Barbara,
Forte Giancarlo,
Pagliari Francesca,
Pagliari Stefania,
Carotenuto Felicia,
Fiaccavento Roberta,
Rinaldi Antonio,
Di Nardo Paolo,
Licoccia Silvia,
Traversa Enrico
Publication year - 2010
Publication title -
macromolecular bioscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.924
H-Index - 105
eISSN - 1616-5195
pISSN - 1616-5187
DOI - 10.1002/mabi.200900323
Subject(s) - scaffold , porosity , biomedical engineering , materials science , tissue engineering , lamellar structure , interconnectivity , chemistry , biophysics , composite material , biology , medicine , artificial intelligence , computer science
The lack of a vascular network and poor perfusion is what mostly prevents three‐dimensional (3D) scaffolds from being used in organ repair when reconstruction of thick tissues is needed. Highly‐porous scaffolds made of poly( L ‐lactic acid) (PLLA) are prepared by directional thermally induced phase separation (dTIPS) starting from 1,4‐dioxane/PLLA solutions. The influence of polymer concentration and temperature gradient, in terms of imposed intensity and direction, on pore size and distribution is studied by comparison with scaffolds prepared by isotropic TIPS. The processing parameters are optimized to achieve an overall porosity for the 3D scaffolds of about 93% with a degree of interconnectivity of 91%. The resulting pore network is characterized by the ordered repetition of closely packed dendrite‐like cavities, each one showing stacks of 20 µm large side lamellar branches departing from 70 µm diameter vertical backbones, strongly resembling the vascular patterns. The in vitro biological responses after 1 and 2 weeks are evaluated from mesenchymal (bone marrow stromal) cells (MSC) static culturing. A novel vacuum‐based deep‐seeding method is set up to improve uniform cell penetration down to scaffold thicknesses of over 1 mm. Biological screenings show significant 3D scaffold colonization even after 18 h, while cellular retention is observed up to 14 d in vitro (DIV). Pore architecture‐driven cellular growth is accompanied by cell tendency to preserve their multi‐potency towards differentiation. Confluent tissues as thick as 1 mm were reconstructed taking advantage of the large perfusion enhanced by the highly porous microstructure of the engineered scaffolds, which could successfully serve for applications aimed at vascular nets and angiogenesis.