Premium
Functional Films of Maleic Anhydride Copolymers under Physiological Conditions
Author(s) -
Pompe Tilo,
Renner Lars,
Grimmer Milauscha,
Herold Nicole,
Werner Carsten
Publication year - 2005
Publication title -
macromolecular bioscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.924
H-Index - 105
eISSN - 1616-5195
pISSN - 1616-5187
DOI - 10.1002/mabi.200500097
Subject(s) - comonomer , maleic anhydride , swelling , polymer chemistry , copolymer , aqueous solution , maleic acid , hydrolysis , reactivity (psychology) , materials science , chemistry , polymer , organic chemistry , composite material , medicine , alternative medicine , pathology
Summary: Reactivity and swelling of nanometer films of alternating maleic anhydride copolymers were investigated in dependence on the kind of comonomer and molar mass of copolymer in aqueous solution at pH 7.4 and pH 3.0 in order to reveal their characteristics under physiological conditions. Fully hydrolyzed (maleic acid) chains of the copolymers with styrene, propene, and ethylene comonomers covalently bound to SiO 2 substrates showed a “mushroom” swelling behavior at pH 7.4 with a layer thickness scaling of N 3/5 . Decreasing the environmental pH was found to induce a comonomer‐dependent shrinking or collapse of the immobilized polymers due to the change in ionization. From the swelling kinetics of non‐hydrolyzed chains, the time constants and characteristics of swelling and anhydride hydrolysis were determined and found to depend on the type of comonomer. The short‐ and long‐term swelling kinetics [ l ∼ t and ∼ln( t ) 1/2 ] were found to be in agreement with theoretical models of polymer swelling, while at intermediate time scales enhanced swelling was observed due to hydrolysis reaction of maleic anhydride groups. The findings elucidate the variety of properties of maleic anhydride copolymer films under physiological conditions, which can advantageously be applied for biofunctionalization of different templates.Swelling of nanometer films of alternating maleic anhydride copolymers in aqueous solution at pH 7.4 and pH 3.0.