z-logo
Premium
Microdialysis monitoring of porcine liver metabolism during warm ischemia with arterial and portal clamping
Author(s) -
Ungerstedt Johan,
Nowak Greg,
Ungerstedt Urban,
Ericzon BoGöran
Publication year - 2009
Publication title -
liver transplantation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.814
H-Index - 150
eISSN - 1527-6473
pISSN - 1527-6465
DOI - 10.1002/lt.21690
Subject(s) - medicine , microdialysis , clamping , liver transplantation , ischemia , cardiology , transplantation , dopamine , mechanical engineering , engineering
Early detection of vascular complications following liver surgery is crucial. In the present study, intrahepatic microdialysis was used for continuous monitoring of porcine liver metabolism during occlusion of either the portal vein or the hepatic artery. Our aim was to assess whether microdialysis can be used to detect impaired vascular inflow by metabolic changes in the liver. Changes in metabolite concentrations in the hepatic interstitium were taken as markers for metabolic changes. After laparotomy, microdialysis catheters were introduced directly into the liver, enabling repeated measurements of local metabolism. Glucose, lactate, pyruvate, and glycerol were analyzed at bedside every 20 minutes, and the lactate/pyruvate ratio was calculated. In the arterial clamping group, the glucose, lactate, glycerol, and lactate/pyruvate ratio significantly increased during the 2‐hour vessel occlusion and returned to baseline levels during the 3‐hour reperfusion. In the portal occlusion group and in the control group, the measured metabolites were stable throughout the experiment. Our findings show that liver metabolism, as reflected by changes in the concentrations of glucose, lactate, and glycerol and in the lactate/pyruvate ratio, is markedly affected by occlusion of the hepatic artery. Surprisingly, portal occlusion resulted in no major metabolic changes. In conclusion, the microdialysis technique can detect and monitor arterial vascular complications of liver surgery, whereas potential metabolic changes in the liver induced by portal occlusion were not seen in the current study. Microdialysis may thus be suitable for use in liver surgery to monitor intrahepatic metabolic changes. Liver Transpl 15:280–286, 2009. © 2009 AASLD.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here