Premium
Characterization of the transmission behavior of dental filling materials and cements for the diode lasers’ and the Nd:YAG laser's wavelengths
Author(s) -
Diebolder Rolf,
Schmid Carmen U.,
Luthardt Ralph G.,
Rudolph Heike,
Kuhn Katharina
Publication year - 2019
Publication title -
lasers in surgery and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 112
eISSN - 1096-9101
pISSN - 0196-8092
DOI - 10.1002/lsm.23081
Subject(s) - materials science , laser , wavelength , absorption (acoustics) , glass ionomer cement , composite material , diode , optics , optoelectronics , physics
Objectives Diode lasers and the Nd:YAG laser are used in periodontal therapy and soft tissue surgery. Dental filling materials or cements might be inadvertently damaged. The underlying mechanism of the damage is based on the dental material's specific transmission and thus absorption behavior. Materials and Methods Twenty‐four material representatives for composites, glass ionomer cements and other material classes (e.g., compomer) were processed to 100 μm and 200 μm planar specimens and spectroscopically measured for their collimated transmission in the photo spectrometer Varian Cary 5000. The (1) mean intensity of transmitted light was determined for the laser wavelengths of interest (810 nm, 940 nm, 980 nm, 1,064 nm) and used to calculate the (2) absorption lengths. Results The (1) mean intensity of transmitted light ranged between 9.51 % (Panavia F 2.0 for 810 nm) and 96.79% (Artegral Cem for 1,064 nm) for the composite specimens (100 μm) and was—with few exceptions—near zero for the representatives of glass ionomer cement and the other material classes. The (2) absorption lengths were between 0.06 mm (Panavia F 2.0 for all wavelengths of interest) and 1.33 mm (Coltène Duo Cement Plus for 1,064 nm) for the composites and below or equal 0.15 mm (PermaCem for 1,064 nm) for the few representatives of glass ionomer cements and the other material classes with mean intensities of transmitted light, which were not near zero and thus permitted to calculate absorption lengths. Conclusions The transmission behavior varied between the different material classes and even within, albeit less pronounced. Composites generally showed the highest intensities of transmitted light and are thus least susceptible to surface damage by laser light (810 nm, 940 nm, 980 nm, 1,064 nm). The results can be used to improve and develop laser applications involving purposeful interactions between laser light and dental materials. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.