z-logo
Premium
Fractional CO 2 laser treatment for vaginal laxity: A preclinical study
Author(s) -
Kwon TaeRin,
Kim Jong Hwan,
Seok Joon,
Kim Jae Min,
Bak DongHo,
Choi MiJi,
Mun Seok Kyun,
Kim Chan Woong,
Ahn Seungwon,
Kim Beom Joon
Publication year - 2018
Publication title -
lasers in surgery and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 112
eISSN - 1096-9101
pISSN - 0196-8092
DOI - 10.1002/lsm.22940
Subject(s) - van gieson's stain , lamina propria , h&e stain , staining , laser , pathology , masson's trichrome stain , chemistry , erythema , medicine , biomedical engineering , surgery , epithelium , optics , physics
Background and Objective Various studies have investigated treatment for vaginal laxity with microablative fractional carbon dioxide CO 2 laser in humans; however, this treatment has not yet been studied in an animal model. Herein, we evaluate the therapeutic effects of fractional CO 2 laser for tissue remodeling of vaginal mucosa using a porcine model, with the aim of improving vaginal laxity. Study Design/Materials and Methods The fractional CO 2 laser enables minimally invasive and non‐incisional procedures. By precisely controlling the laser energy pulses, energy is sent to the vaginal canal and the introitus area to induce thermal denaturation and contraction of collagen. We examined the effects of fractional CO 2 laser on a porcine model via clinical observation and ultrasound measurement. Also, thermal lesions were histologically examined via hematoxylin–eosin staining, Masson's trichrome staining, and Elastica van Gieson staining and immunohistochemistry. Results The three treatment groups, which were determined according to the amount of laser‐energy applied (60, 90, and 120 mJ), showed slight thermal denaturation in the vaginal mucosa, but no abnormal reactions, such as excessive hemorrhaging, vesicles, or erythema, were observed. Histologically, we also confirmed that the denatured lamina propria induced by fractional CO 2 laser was dose‐dependently increased after laser treatment. The treatment groups also showed an increase in collagen and elastic fibers due to neocollagenesis and angiogenesis, and the vaginal walls became firmer and tighter because of increased capillary and vessel formation. Also, use of the fractional CO 2 laser increased HSP (heat shock protein) 70 and collagen type I synthesis. Conclusion Our results show that microablative fractional CO 2 laser can produce remodeling of the vaginal connective tissue without causing damage to surrounding tissue, and the process of mucosa remodeling while under wound dressings enables collagen to increase and the vaginal wall to become thick and tightened. Lasers Surg. Med. 50:940–947, 2018. © 2018 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here