z-logo
Premium
Microarray analysis of port wine stains before and after pulsed dye laser treatment
Author(s) -
Laquer Vivian T.,
Hevezi Peter A.,
Albrecht Huguette,
Chen Tina S.,
Zlotnik Albert,
Kelly Kristen M.
Publication year - 2013
Publication title -
lasers in surgery and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 112
eISSN - 1096-9101
pISSN - 0196-8092
DOI - 10.1002/lsm.22087
Subject(s) - gene expression , port wine stain , microarray , pathology , dna microarray , gene , human skin , microarray analysis techniques , gene expression profiling , biology , medicine , genetics , laser , physics , optics
Background and Objectives Neither the pathogenesis of port wine stain (PWS) birthmarks nor tissue effects of pulsed dye laser (PDL) treatment of these lesions is fully understood. There are few published reports utilizing gene expression analysis in human PWS skin. We aim to compare gene expression in PWS before and after PDL, using DNA microarrays that represent most, if not all, human genes to obtain comprehensive molecular profiles of PWS lesions and PDL‐associated tissue effects. Materials and Methods Five human subjects had PDL treatment of their PWS. One week later, three biopsies were taken from each subject: normal skin (N); untreated PWS (PWS); PWS post‐PDL (PWS + PDL). Samples included two lower extremity lesions, two facial lesions, and one facial nodule. High‐quality total RNA isolated from skin biopsies was processed and applied to Affymetrix Human gene 1.0ST microarrays for gene expression analysis. We performed a 16 pair‐wise comparison identifying either up‐ or down‐regulated genes between N versus PWS and PWS versus PWS + PDL for four of the donor samples. The PWS nodule (nPWS) was analyzed separately. Results There was significant variation in gene expression profiles between individuals. By doing pair‐wise comparisons between samples taken from the same donor, we were able to identify genes that may participate in the formation of PWS lesions and PDL tissue effects. Genes associated with immune, epidermal, and lipid metabolism were up‐regulated in PWS skin. The nPWS exhibited more profound differences in gene expression than the rest of the samples, with significant differential expression of genes associated with angiogenesis, tumorigenesis, and inflammation. Conclusion In summary, gene expression profiles from N, PWS, and PWS + PDL demonstrated significant variation within samples from the same donor and between donors. By doing pair‐wise comparisons between samples taken from the same donor and comparing these results between donors, we were able to identify genes that may participate in formation of PWS and PDL effects. Our preliminary results indicate changes in gene expression of angiogenesis‐related genes, suggesting that dysregulation of angiogenic signals and/or components may contribute to PWS pathology. Lasers Surg. Med. 45: 67–75, 2013. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here