z-logo
Premium
Ex vivo histological characterization of a novel ablative fractional resurfacing device
Author(s) -
Hantash Basil M.,
Bedi Vikramaditya P.,
Chan Kin Foong,
Zachary Christopher B.
Publication year - 2007
Publication title -
lasers in surgery and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 112
eISSN - 1096-9101
pISSN - 0196-8092
DOI - 10.1002/lsm.20405
Subject(s) - ex vivo , dermis , biomedical engineering , ablation , epidermis (zoology) , materials science , h&e stain , lesion , laser , ablative case , pathology , stain , human skin , in vivo , chemistry , staining , anatomy , medicine , optics , surgery , biology , radiation therapy , physics , genetics , microbiology and biotechnology
Background and Objectives We introduce a novel CO 2 laser device that utilizes ablative fractional resurfacing for deep dermal tissue removal and characterize the resultant thermal effects in skin. Study Design/Materials and Methods A prototype 30 W, 10.6 µm CO 2 laser was focused to a 1/e 2 spot size of 120 µm and pulse duration up to 0.7 milliseconds to achieve a microarray pattern in ex vivo human skin. Lesion depth and width were assessed histologically using either hematoxylin & eosin (H&E) or lactate dehyrdogenase (LDH) stain. Pulse energies were varied to determine their effect on lesion dimensions. Results Microarrays of ablative and thermal injury were created in fresh ex vivo human skin irradiated with the prototype CO 2 laser device. Zones of tissue ablation were surrounded by areas of tissue coagulation spanning the epidermis and part of the dermis. A thin condensed lining on the interior wall of the lesion cavity was observed consistent with eschar formation. At 23.3 mJ, the lesion width was approximately 350 µm and depth 1 mm. In this configuration, the cavities were spaced approximately 500 µm apart and interlesional epidermis and dermis demonstrated viable tissue by LDH staining. Conclusion A novel prototype ablative CO 2 laser device operating in a fractional mode was developed and its resultant thermal effects in human abdominal tissue were characterized. We discovered that controlled microarray patterns could be deposited in skin with variable depths of dermal tissue ablation depending on the treatment pulse energy. This is the first report to characterize the successful use of ablative fractional resurfacing as a potential approach to dermatological treatment. Lasers Surg. Med. 39:87–95, 2007. © 2007 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here