z-logo
Premium
Occurrence limit of stick‐slip: dimensionless analysis for fundamental design of robust‐stable systems
Author(s) -
Nakano Ken,
Maegawa Satoru
Publication year - 2010
Publication title -
lubrication science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.632
H-Index - 36
eISSN - 1557-6833
pISSN - 0954-0075
DOI - 10.1002/ls.95
Subject(s) - dimensionless quantity , mechanical system , control theory (sociology) , slip (aerodynamics) , vibration , dissipation , mechanics , kinetic energy , robustness (evolution) , computer science , physics , classical mechanics , engineering , thermodynamics , chemistry , mechanical engineering , control (management) , biochemistry , quantum mechanics , artificial intelligence , gene
In most practical mechanical systems, sliding surfaces are utilised under the assumption that they operate smoothly. Stick‐slip motion can therefore be a serious nuisance that interferes with achieving high performance in mechanical systems. The present paper describes the nature of stick‐slip based on an analysis of a 1‐DOF sliding system. The dimensionless parameters controlling the stick‐slip are clarified by deriving the dimensionless forms of the governing equations. For a friction model that considers the dependence of the kinetic friction coefficient on the relative velocity, we find three types of sliding systems with regard to stick‐slip: the unstable system, the stable system and the robust‐stable system. A criterion is proposed for the fundamental design of robust‐stable systems; if a sliding system is robust stable, no matter how large a disturbance is, the energy of the disturbance is dissipated perfectly, and steady sliding without any vibration is ensured. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom