Premium
Tribochemistry of aluminium and aluminium alloy systems lubricated with liquids containing alcohol or amine additive types and some other lubricants — a review
Author(s) -
Kajdas C.,
Liu W.
Publication year - 2004
Publication title -
lubrication science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.632
H-Index - 36
eISSN - 1557-6833
pISSN - 0954-0075
DOI - 10.1002/ls.3010160307
Subject(s) - aluminium , lubricant , tribology , materials science , lubrication , metallurgy , base oil , aluminium alloy , alloy , amine gas treating , boundary lubrication , chemical engineering , composite material , scanning electron microscope , organic chemistry , chemistry , engineering
The ability of a lubricating oil to reduce wear and prevent damage of interacting solids is a crucial factor controlling lubricant formulation. It is well known that friction produces local high temperatures. Many chemical reactions that are initiated by the friction process itself occur at much lower temperatures than those needed to provide the activation energy. Under boundary lubrication conditions, a clean surface exposed as a result of mechanical activity of the solid surface is extremely reactive, especially in the case of metals. This review mostly relates to the tribochemistry of aluminium, and discusses the tribological characteristics of alcohol‐ and amine‐type liquids used as either additives or lubricants to lubricate aluminium and its alloys under boundary friction conditions. Although tribochemical reactions during sliding are perceived in various ways, here the emphasis is on the negative‐ion‐radical action mechanism (NIRAM) approach. This review addresses the question as to how present knowledge of tribochemistry can be applied to the elucidation of the mechanisms of action by which the boundary lubricant compounds considered reduce aluminium‐on‐aluminium, steel‐on‐aluminium, and aluminium‐on‐steel wear. Also, information and a discussion on the tribological behaviour of other additives and/or lubricants in relation to the friction and wear of aluminium and its alloys are presented. A concise review of the most recent work on the tribochemistry of selected fluorinated alcohols is also included.