z-logo
Premium
Effect of mechanical shear on the thin‐film properties of base oil‐polymer mixtures
Author(s) -
Devlin M. T.,
Hammock T.,
Jao T. C.
Publication year - 2002
Publication title -
lubrication science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.632
H-Index - 36
eISSN - 1557-6833
pISSN - 0954-0075
DOI - 10.1002/ls.3010140205
Subject(s) - polymer , materials science , base oil , base (topology) , shear (geology) , composite material , chemical engineering , engineering , scanning electron microscope , mathematical analysis , mathematics
The thickness and frictional characteristics of thin lubricant films are known to affect the fuel economy properties of oils. The base oil and polymer compositions of the lubricant are generally considered to be critical chemical factors that can influence these thin‐film lubricant properties in new oils. However, it is important to produce lubricants with good fuel economy properties that are maintained after the lubricant is degraded. Lubricants in use can undergo oxidation and mechanical shear degradation. The effect of oxidation degradation on thin‐film physical properties has previously been studied. This paper investigates the effect of mechanical shearing on thin‐film properties. Dispersant olefin copolymers are found to reduce thin‐film friction in simple mixtures and in fully formulated oils. In simple mixtures, shearing the dispersant olefin copolymers does not affect the friction‐reducing ability of these polymers. In fully formulated oils, even though shearing diminishes to a degree the friction‐reducing ability of dispersant olefin copolymers, these copolymers can still provide significant friction reduction.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here