z-logo
Premium
A Progress Review on Solid‐State LiDAR and Nanophotonics‐Based LiDAR Sensors
Author(s) -
Li Nanxi,
Ho Chong Pei,
Xue Jin,
Lim Leh Woon,
Chen Guanyu,
Fu Yuan Hsing,
Lee Len Yao Ting
Publication year - 2022
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.202100511
Subject(s) - lidar , remote sensing , ranging , nanophotonics , computer science , optics , physics , telecommunications , geology
Light detection and ranging (LiDAR) sensors enable precision sensing of an object in 3D. LiDAR technology is widely used in metrology, environment monitoring, archaeology, and robotics. It also shows high potential to be applied in autonomous driving. In traditional LiDAR sensors, mechanical rotator is used for optical beam scanning, which brings about limitations on their reliability, size, and cost. These limitations can be overcome by a more compact solid‐state solution. Solid‐state LiDAR sensors are commonly categorized into the following three types: flash‐based LiDAR, microelectromechanical system (MEMS)‐based LiDAR, and optical phased array (OPA)‐based LiDAR. Furthermore, advanced optics technology enables novel nanophotonics‐based devices with high potential and superior advantages to be utilized in a LiDAR sensor. In this review, LiDAR sensor principles are introduced, including three commonly used sensing schemes: pulsed time of flight (TOF), amplitude‐modulated continuous wave TOF, and frequency‐modulated continuous wave. Recent advances in conventional solid‐state LiDAR sensors are summarized and presented, including flash‐based LiDAR, MEMS‐based LiDAR, and OPA‐based LiDAR. The recent progress on emerging nanophotonics‐based LiDAR sensors is also covered. A summary is made and the future outlook on advanced LiDAR sensors is provided.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here