z-logo
Premium
Breather Molecular Complexes in a Passively Mode‐Locked Fiber Laser
Author(s) -
Peng Junsong,
Zhao Zihan,
Boscolo Sonia,
Finot Christophe,
Sugavanam Srikanth,
Churkin Dmitry V.,
Zeng Heping
Publication year - 2021
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.202000132
Subject(s) - breather , physics , picosecond , work (physics) , laser , molecule , dissipative system , diatomic molecule , soliton , nonlinear system , molecular physics , quantum mechanics
Abstract Breathing solitons are nonlinear waves in which the energy concentrates in a localized and oscillatory fashion. Similarly to stationary solitons, breathers in dissipative systems can form stable bound states displaying molecule‐like dynamics, which are frequently called breather molecules. So far, the experimental observation of optical breather molecules and the real‐time detection of their dynamics are limited to diatomic molecules, that is, bound states of only two breathers. In this work, the observation of different types of breather complexes in a mode‐locked fiber laser: multibreather molecules, and molecular complexes originating from the binding of two breather‐pair molecules or a breather pair molecule and a single breather is reported. The intermolecular temporal separation of the molecular complexes attains several hundreds of picoseconds, which is more than an order of magnitude larger than that of their stationary soliton counterparts and is a signature of long‐range interactions. Numerical simulations of the laser model support the experimental findings. Moreover, nonequilibrium dynamics of breathing solitons are also observed, including breather collisions and annihilation. This work opens the possibility of studying the dynamics of many‐body systems in which breathers are the elementary constituents.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here